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Abstract

The dynamic axisymmetric stress field in an initially finite pre-stretched bilayered slab resting on a rigid foundation is

studied within the framework of the piecewise homogeneous body model. The three-dimensional linearized theory of

elastic waves in initially stressed bodies is used. It is assumed that a time-harmonic point-located normal force acts on the

free face plane of the slab. The considered problem is solved by employing the Hankel integral transformation. The

materials of the layers are assumed to be incompressible, and the elastic relations are given through the Treloar potential.

The formulation and solution to the problem coincide with the corresponding ones of classical linear theory of elasticity for

an incompressible body in the case where there is no initial stretching in the layers. Numerical results are presented and

these results involve stresses acting on the interface planes. In particular, it is established that stresses on the interface

planes decrease as the pre-stretching is increased.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Many modern elastodynamic problems, especially elastic-wave propagation problems, are not solvable
within the framework of the classical linear theory of elasticity. As a result, a general nonlinear theory of
elastic waves with various simplifying modifications has been introduced since the mid-1900s and is still being
developed. Comprehensive treatments of the subject can be found in Refs. [1–4]. A review of these treatments
was presented in Ref. [5].

A class of interesting and urgent elastodynamic problems, which cannot be solved within the framework of
classical linear theory of elastic waves, is that of elastodynamic problems for initially stressed bodies. Such
problems have a wide range of applications in practice. For example, initial stresses occur in structural
elements after manufacturing and assembly. Initial stresses are also presented in the Earth’s crust due to the
action of geostatic and geodynamic forces, in rocks and so on. Accordingly, a large number of theoretical and
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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experimental investigations (for example Refs. [6–13] and many others) have been made in this field. A
systematic analysis of results obtained before 1986 was made in monographs [14,15]. Subsequent research is
reviewed in a paper [16]. Current investigations in this field are being pursued intensively; see for example
Refs. [17–24].

Almost all of these investigations were made within the framework of the three-dimensional linearized
theory of elastic waves in initially stressed bodies (TLTEWISB). Also, a substantial portion of the studies is
based on wave propagation in layered composite materials with homogeneous initial stresses.

The study of the influence of the initial stresses on the dynamic stress-state in a homogeneous and layered
medium is of great significance, in both theoretical and practical sense. Until now, there were a few studies in
this field; see for example Refs. [25–29].

In the paper [25], the Lamb problem for a compressible half-plane with initial stresses was considered. In the
papers [26,27] an attempt was made to study the time-harmonic two-dimensional Lamb problem for the half-
plane covered with the pre-stretched layer. In Ref. [28] the investigations [25,26] have been developed for a
strip load acting on the covering layer. The development of the studies [26,27] for the three-dimensional Lamb
problem has been made in the paper [29].

In the foregoing investigations it is assumed that the region occupied by the body is semi-infinite. Therefore,
the results obtained in Refs. [25–29] cannot be applied, for example, in the cases where the aforementioned
dynamical stress field is studied for the layered material, which rests on the rigid foundation. Nor these results
can be applied for structural elements whose basic material is covered with the layered ones. If the stiffness of
the basic material (modulus of elasticity) is significantly greater than those of the covering layers, then the
basic material can be modelled as a rigid foundation. It is well known that as a result of the covering procedure
the residual (initial) stresses arise in the covering layers and it is almost inevitable to alert these stresses.
Therefore, under studying the dynamical stress field in such structural members it is necessary to take the
foregoing initial stresses into account.

Because of the above discussions in the present paper, the investigations carried out in Refs. [25–29] are
developed for systems, which comprise bilayered infinite slab and rigid foundation. It is assumed that a time-
harmonic point-located normal force acts on the free face plane of the upper layer of the slab and the
axisymmetric stress state in this slab is studied. Furthermore, it is assumed that the layers of the slab are finite
pre-strained (-stretched) radially. We suppose that the materials of the layers are incompressible neo-Hookean
materials and the stress-strain relation for those are given through the Treloar potential. The investigations are
carried out within the framework of the piecewise-homogeneous body model by the use of the TLTEWISB.
2. Formulation of the problem

We consider the bilayered slab resting on the rigid foundation (Fig. 1). Assume that in the natural state, the
thicknesses of the upper and lower layers of the slab are h1 and h2, respectively. In the natural state, we
determine the positions of the points of the layers by the Lagrangian coordinates in the Cartesian system of
Fig. 1. The geometry of the bilayered slab resting on the rigid foundation.
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coordinates Oy1y2y3 as well as in the cylindrical system of coordinates Oryy3. Assume that the layers of the
slab have infinite length in the radial direction. We aim that the layers before the compounding with each
other and with a rigid foundation be stretched separately along the radial direction and that in each of them,
the homogeneous axisymmetric initial finite strain state appear. These initial strains are caused by the static
forces acting in the radial direction at infinity. Note that the action of these forces continues during all further
dynamical processes.

With the initial state of the layers of the slab we associate the Lagrangian cylindrical system of coordinates
O0r0y0y03 and the Cartesian system of coordinates O0y01y

0
2y03. Assume that the material of the layers is of

incompressible neo-Hookean materials and the values related to the upper and lower layers of the slab are
denoted by upper indices (1) and (2), respectively. Furthermore, we denote the values related to the initial state
by upper index 0. Thus, according to the above-stated, the initial state in the layers can be determined as
follows:

uðkÞ;0m ¼ lðkÞm � 1
� �

ym; lðkÞ1 ¼ lðkÞ2 alðkÞ3 ; lðkÞm ¼ const:;

lðkÞ1 lðkÞ2 lðkÞ3 ¼ 1; m ¼ 1; 2; 3; k ¼ 1; 2, ð1Þ

where uðkÞ;0m is a displacement and lðkÞm is the elongation along the Oym-axis. We introduce the following
notation:

lðkÞ1 ¼ lðkÞ2 ¼ lðkÞ; lðkÞ3 ¼ ðl
ðkÞ
Þ
�2. (2)

It follows from Eq. (1) that

y0i ¼ lðkÞi yi; r0 ¼ lðkÞr; h01 ¼ ðl
ð1Þ
Þ
�2h1; h02 ¼ ðl

ð2Þ
Þ
�2h2. (3)

Below the values related to the system of coordinates associated with initial state, i.e. with O0y01y
0
2y03, will be

denoted by upper prime.
Within the above-stated, let us investigate the stress state in the considered slab in the case where on the free

face plane of the upper layer, the point-located normal time-harmonic force acts. We will make this
investigation by the use of coordinates r0 and y03 in the framework of the TLTEWISB.

In the construction of the field equations of the TLTEWISB, one considers two states of a deformable solid.
The first is regarded as the initial or unperturbed state and the second is a perturbed state with respect to the
unperturbed. By the ‘‘state of a deformable solid’’ both motion and equilibrium (as a particular case of
motion) are meant. It is assumed that all values in a perturbed state can be represented as a sum of the values
in the initial state and perturbations. The latter is also assumed to be small in comparison with the
corresponding values in the initial state. It is also assumed that both initial (unperturbed) and perturbed states
are described by the equations of nonlinear solid mechanics. Owing to the fact that perturbations are small,
the relationships for the perturbed state in the vicinity of appropriate values for the unperturbed state are
linearized and then, the relations for perturbed state are subtracted from them. The result is the equations of
the TLTEWISB. The general problems of the TLTEWISB have been elaborated in many investigations such
as Refs. [2,14,15,30,31] and others. In the present paper, we will follow the style and notation used in the
monographs [14,15].

Thus, according to Refs. [14,15], we write the basic relations of the TLTEWISB for the incompressible body
under axisymmetrical state. These relations are satisfied within each layer because we use the piecewise-
homogeneous body model.

The equations of motion are

q
qr0

Q0ðkÞrr þ
q
qy03

Q
0ðkÞ
r03 þ

1

r0
Q
0ðkÞ
r0r0 �Q

0ðkÞ

y0y0

� �
¼ r0ðkÞ

q2

qt2
u
0ðkÞ
r0 ,

q
qr0

Q
0ðkÞ
3r0 þ

q
qy03

Q
0ðkÞ
33 þ

1

r0
Q
0ðkÞ
3r0 ¼ r0ðkÞ

q2

qt2
u
0ðkÞ
3 . (4)
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The mechanical relations are

Q
0ðkÞ
r0r0 ¼ w0ðkÞ1111

qu
0ðkÞ
r0

qr0
þ w0ðkÞ1122

u
0ðkÞ
r0

r0
þ w0ðkÞ1133

qu
0ðkÞ
3

qy03
þ p0ðkÞ,

Q
0ðkÞ

y0y0 ¼ w0ðkÞ2211

qu
0ðkÞ
r0

qr0
þ w0ðkÞ2222

u
0ðkÞ
r0

r0
þ w0ðkÞ2233

qu
0ðkÞ
3

qy03
þ p0ðkÞ,

Q
0ðkÞ
33 ¼ w0ðkÞ3311

qu
0ðkÞ
r0

qr0
þ w0ðkÞ3322

u
0ðkÞ
r0

r0
þ w0ðkÞ3333

qu
0ðkÞ
3

qy03
þ p0ðkÞ,

Q
0ðkÞ
r03 ¼ w0ðkÞ1313

qu
0ðkÞ
r0

qy03
þ w0ðkÞ1331

qu
0ðkÞ
3

qr0
; Q

0ðkÞ
3r0 ¼ w0ðkÞ3113

qu
0ðkÞ
r0

qy03
þ w0ðkÞ3131

qu
0ðkÞ
3

qr0
. (5)

In Eqs. (4) and (5) through Q
0ðkÞ
r0r0 ; . . . ;Q

0ðkÞ
3r0 the perturbations of the components of Kirchhoff stress tensor are

determined. The notation u
0ðkÞ
r0 ; u

0ðkÞ
3 shows the perturbations of the components of the displacement vector,

p0ðkÞ ¼ p0ðkÞðr0; y03; tÞ is an unknown function. The constants w0ðkÞ1111; . . . ; w
0ðkÞ
3333 in Eqs. (4), (5) are determined

through the mechanical constants of the layers’ materials and through the initial stress state, r0ðkÞ is a density
of the kth layer material. Note that for the considered initial strain state the expression of the constants

w0ðkÞ1111; . . . ; w
0ðkÞ
3333 is given through the expression of those in the system of coordinates Oryy3 (denoted by

wðkÞ1111; . . . ; w
ðkÞ
3333;r

ðkÞ) by the following formulae:

w0ðkÞ1111 ¼ ðl
ðkÞ
Þ
2wðkÞ1111; w0ðkÞ1122 ¼ ðl

ðkÞ
Þ
2wðkÞ1122; w0ðkÞ1133 ¼ ðl

ðkÞ
Þ
�1wðkÞ1133; w0ðkÞ2222 ¼ ðl

ðkÞ
Þ
2wðkÞ2222,

w0ðkÞ1221 ¼ ðl
ðkÞ
Þ
2wðkÞ1221; w0ðkÞ1313 ¼ ðl

ðkÞ
Þ
�1wðkÞ1313; w0ðkÞ1331 ¼ ðl

ðkÞ
Þ
2wðkÞ1331; w0ðkÞ3131 ¼ w0ðkÞ1313,

w0ðkÞ2211 ¼ w0ðkÞ1122; w0ðkÞ2233 ¼ w0ðkÞ1133; w0ðkÞ3311 ¼ w0ðkÞ1133 ¼ w0ðkÞ3322 ¼ w0ðkÞ2233,

w0ðkÞ3113 ¼ ðl
ðkÞ
Þ
2wðkÞ3113; w0ðkÞ3333 ¼ ðl

ðkÞ
Þ
�4wðkÞ3333; r0ðkÞ ¼ rðkÞ. (6)

In the present investigation we assume that the elasticity relations of the layers’ materials are given by neo-
Hookean-type (Treloar) potential. This potential is given as follows:

F ¼ C10ðI1 � 3Þ; I1 ¼ 3þ 2A1; A1 ¼ err þ eyy þ e33, (7)

where C10 is an elastic constant; A1 is the first algebraic invariant of the Green’s strain tensor, err, eyy and e33
are the components of this tensor. For the considered axisymmetric case the components of the Green’s strain
tensor are determined through the components of the displacement vector by the following expressions:

err ¼
qur

qr
þ

1

2

qur

qr

� �2

þ
1

2

qu3

qr

� �2

; eyy ¼
ur

r
þ

1

2

ur

r

� �2
,

er3 ¼
1

2

qu3

qr
þ

qur

qy3

þ
qur

qr

qur

qy3

þ
qu3

qr

qu3

qy3

� �
; e33 ¼

qu3

qy3

þ
1

2

qu3

qr

� �2

þ
1

2

qu3

qy3

� �2

. (8)

In this case the components Sij of the Lagrange stress tensor are determined as follows:

Srr ¼
qF
qerr

þ pg�rr; Syy ¼
qF
qeyy
þ pg�yy; S33 ¼

qF
qe33
þ pg�33; Sr3 ¼

qF
qer3

; Sr3 ¼ S3r,

g�11 ¼ 1þ 2
qur

qr
þ

qur

qr

� �2

þ
qu3

qr

� �2

; g�33 ¼ 1þ 2
qu3

qy3

þ
qu3

qy3

� �2

þ
qur

qy3

� �2

,

g�yy ¼ 1þ
2

r
ur þ

1

r2
ðurÞ

2. (9)
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Note that the expressions (7)–(9) are written in the arbitrary system of cylindrical coordinate system,
without any restriction related to the association of this system to the natural or the initial state of the
considered bilayered slab.

For the considered case the relations between the perturbation of the Kirchhoff stress tensor and the
perturbation of the components of the Lagrange stress tensor can be written as follows:

Q
0ðkÞ
r0r0 ¼ lðkÞSðkÞr0r0 þ S0ðkÞ

rr

qu
0ðkÞ
r0

qr0
; Q

0ðkÞ

y0y0 ¼ lðkÞSðkÞy0y0 þ S0ðkÞ
rr

u
0ðkÞ
r0

r0
,

Q
0ðkÞ
33 ¼ ðl

ðkÞ
Þ
�2S

ðkÞ
33 ; Q

0ðkÞ
r03 ¼ lðkÞSðkÞr03 þ S0ðkÞ

rr

qu
0ðkÞ
3

qr0
; Q

0ðkÞ
3r0 ¼ ðl

ðkÞ
Þ
�2S

ðkÞ
3r0 . (10)

According to Refs. [14,15], by linearization of Eq. (9) and taking Eqs. (10), (1) and (2) into account, we obtain
the following expressions for the constants wðkÞ1111; . . . ; w

ðkÞ
3333 in Eq. (6):

wðkÞ1111 ¼ 2C
ðkÞ
10 ðl

ðkÞ
Þ
�2
ððlðkÞÞ2 þ ðlðkÞÞ�4Þ,

wðkÞ1122 ¼ wðkÞ1133 ¼ wðkÞ2233 ¼ wðkÞ3311 ¼ wðkÞ2211 ¼ wðkÞ3322 ¼ 0; wðkÞ1331 ¼ 2C
ðkÞ
10 ; wðkÞ1221 ¼ 2C

ðkÞ
10 ; wðkÞ3333 ¼ 4C

ðkÞ
10 ,

wðkÞ1313 ¼ 2C
ðkÞ
10 ðl

ðkÞ
Þ
�3; wðkÞ3113 ¼ 2C

ðkÞ
10 . (11)

It should be noted that to the above-written equations the incompressibility conditions of the layers’ materials
must be added. These conditions for the considered case can be written as follows:

1

lðkÞ
qu
0ðkÞ
r0

qr0
þ

u
0ðkÞ
r0

r0

 !
þ ðlðkÞÞ2

qu
0ðkÞ
3

qy03
¼ 0. (12)

Thus, the stress state in the bilayered slab will be investigated by the use of Eqs. (4)–(12). In this case we will
assume that the following boundary and contact conditions are satisfied.

Q
0ð1Þ
33

���
y0
3
¼0
¼ �P0dðr0Þeiot 1

ðlð1ÞÞ2
; Q

0ð1Þ
3r0

���
y0
3
¼0
¼ 0,

Q
0ð1Þ
33

���
y0
3
¼�h1=ðl

ð1Þ
Þ
2
¼ Q

0ð2Þ
33

���
y0
3
¼�h1=ðl

ð1Þ
Þ
2
; Q

0ð1Þ
3r0

���
y0
3
¼�h1=ðl

ð1Þ
Þ
2
¼ Q

0ð2Þ
3r0

���
y0
3
¼�h1=ðl

ð1Þ
Þ
2
,

u
0ð1Þ
r0

���
y0
3
¼�h1=ðlð1ÞÞ2

¼ u
0ð2Þ
r0

���
y0
3
¼�h1=ðlð1ÞÞ2

; u
0ð1Þ
3

���
y0
3
¼�h1=ðlð1ÞÞ2

¼ u
0ð2Þ
3

���
y0
3
¼�h1=ðlð1ÞÞ2

,

u
0ð2Þ
r0

���
y0
3
¼�h1=ðl

ð1Þ
Þ
2
�h2=ðl

ð2Þ
Þ
2
¼ 0; u

0ð2Þ
3

���
y0
3
¼�h1=ðl

ð1Þ
Þ
2
�h2=ðl

ð2Þ
Þ
2
¼ 0, (13)

where dðr0Þ is the Dirac delta function.
With the above-stated we exhaust the formulation of the problem and the consideration of the governing

field equations. It should be noted that in the case where lðkÞ ¼ 1, k ¼ 1; 2 Eqs. (4)–(6), (10)–(12) and
conditions (13) for kth layer transform to the corresponding ones of the classical linear theory of the elasticity
for the incompressible body.



ARTICLE IN PRESS
S.D. Akbarov / Journal of Sound and Vibration 294 (2006) 221–237226
3. Solution procedure

Substituting Eq. (5) in Eq. (4), we obtain the following equation of motion in the displacement terms:

w0ðkÞ1111

q2u0ðkÞr0

qr02
þ w0ðkÞ1122

q
qr0

u
0ðkÞ
r0

r0

 !
þ w0ðkÞ1133 þ w0ðkÞ1331

� � q2u
0ðkÞ
3

qr0qy03
þ w0ðkÞ1313

q2u
0ðkÞ
r0

qy023

þ
1

r0
w0ðkÞ1111 � w0ðkÞ2211

� � qu
0ðkÞ
r0

qr0
þ w0ðkÞ1122 � w0ðkÞ2222

� � u
0ðkÞ
r0

r02
þ w0ðkÞ1133 � w0ðkÞ2233

� � 1

r0
qu
0ðkÞ
3

qy03

¼ r0ðkÞ
q2u
0ðkÞ
r0

qt2
�

qp0ðkÞ

qr0
,

w0ðkÞ3133

q2u
0ðkÞ
r0

qr0qy03
þ w0ðkÞ3131

q2u0ðkÞ3

qr02
þ

1

r0
w0ðkÞ3113

qu
0ðkÞ
r0

qy03
þ

1

r0
w0ðkÞ3131

qu
0ðkÞ
3

qr0
þ w0ðkÞ3311

q2u0ðkÞr0

qy03qr0

þ w0ðkÞ3322

1

r0
qu
0ðkÞ
r0

qy03
þ w0ðkÞ3333

q2u0ðkÞ3

qy023
¼ r0ðkÞ

q2u
0ðkÞ
3

qt2
�

qp0ðkÞ

qy03
. ð14Þ

Eqs. (12) and (14) compose the complete system with respect to the unknown functions u
0ðkÞ
r0 , u

0ðkÞ
3 and p0ðkÞ.

According to Refs. [14,15], we use the following representation for the displacement and unknown
function p0ðkÞ:

u
0ðkÞ
r0 ¼ �

q2

qr0qy03
X 0ðkÞ; u

0ðkÞ
3 ¼ D01X 0

ðkÞ
,

p0ðkÞ ¼ w0ðkÞ1111 � w0ðkÞ1133 � w0ðkÞ1313

� �
D01 þ w0ðkÞ3113

q2

qy03
2
� r0ðkÞ

q2

qt2

" #
q
qy03

X 0ðkÞ, (15)

where

D01 ¼
d2

dr02
þ

1

r0
d

dr0
. (16)

The function X 0
ðkÞ satisfies the following equation:

D01 þ x0ðkÞ2

� �2 q2

qy023

� �
D01 þ x0ðkÞ3

� �2 q2

qy023

� �
�

r0ðkÞ

w0ðkÞ1331

D01 þ
q2

qy023

� �
q2

qt2

" #
X 0ðkÞ ¼ 0, (17)

where for the considered case

x0ðkÞ2

� �2
¼ 1; x0ðkÞ3

� �2
¼ lðkÞ
� ��6

. (18)

Now we consider the solution to Eq. (17). Because the point load is harmonic in time, only the stationary case
will be considered; all dependent variables become harmonic and can be represented as

Q
0ðkÞ
r0r0 ; . . . ;Q

0ðkÞ
33 ; u

0ðkÞ
r0 ; u

0ðkÞ
3 ; p0ðkÞ;X 0ðkÞ

n o
¼ Q

0ðkÞ

r0r0 ; . . . ;Q
0ðkÞ

33 ; u
0ðkÞ
r0 ; u

0ðkÞ
3 ; p0ðkÞ;X

0ðkÞ
n o

eiot, (19)

where a superimposed dash denotes the amplitude of the relevant quantity. From here on we will omit this
superimposed dash.

If Eq. (19) is employed in Eqs. (14)–(17), by replacing the operator q2=qt2 with �o2 we obtain the same
equations and conditions for the amplitude of the quantities sought. Consequently, introducing the
dimensionless coordinates r0 ! r0=h1; y03! y03=h1 and the dimensionless frequency

O2 ¼
ðoh1Þ

2r0ð2Þ

2C
ð2Þ
10

, (20)
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we obtain the following equation for the potential X 0
ðkÞ from Eqs. (17) and (18).

D01 þ
q2

qy023

� �
D01 þ ðl

ðkÞ
Þ
�6 q2

qy023

� �
�

O2

ðlðkÞÞð2Þ
D01 þ

q2

qy023

� �
C
ð2Þ
10r
0ðkÞ

C
ðkÞ
10 r
0ð2Þ

" #
X 0ðkÞ ¼ 0. (21)

For the solution to Eq. (21) we use the Hankel integral representation for the function X 0ðkÞ:

X 0ðkÞ ¼

Z 1
0

F
ðkÞ
1 eg

ðkÞy0
3J0ðsrÞsds, (22)

where J0ðsrÞ is the Bessel function of zeroth order.
Substituting Eq. (22) into Eq. (21) we obtain the following algebraic equation for gðkÞ:

AðkÞðgðkÞÞ4 þ BðkÞðgðkÞÞ2 þ CðkÞ ¼ 0, (23)

where

AðkÞ ¼ ðlðkÞÞ�6; BðkÞ ¼
1

ðlðkÞÞ2
C
ð2Þ
10

C
ðkÞ
10

r0ðkÞ

r0ð2Þ
O2 � ð1þ ðlðkÞÞ�6Þs2,

CðkÞ ¼ s4 � s2
C
ð2Þ
10

C
ðkÞ
10

r0ðkÞ

r0ð2Þ
O2

ðlðkÞÞ2
. (24)

We obtain from Eq. (23) that

ðgðkÞÞ2 ¼
�BðkÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðBðkÞÞ2 � 4AðkÞCðkÞ

q
2AðkÞ

. (25)

By using the expressions (18) by direct verification and transformation, it is proven that

ðgðkÞ1 Þ
2
¼
�BðkÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðBðkÞÞ2 � 4AðkÞCðkÞ

q
2AðkÞ

¼ s240,

ðgðkÞ2 Þ
2
¼
�BðkÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðBðkÞÞ2 � 4AðkÞCðkÞ

q
2AðkÞ

¼ s2ðlðkÞÞ6 1�
O2

k

s2

� �
, (26)

where

O2
k ¼

C
2ð Þ
10

C
ðkÞ
10

r0ðkÞ

r0ð2Þ
O2

ðlðkÞÞ2
. (27)

According to the expression of ðgðkÞ2 Þ
2 in Eq. (26), the following two cases may occur:

Case 1:

ðgðkÞ2 Þ
240 or O2

k4s2. (28)

Case 2:

ðgðkÞ2 Þ
2o0 or O2

kos2. (29)

In Case 1, the solution to Eq. (21) is determined as

X 0ðkÞ ¼

Z 1
0

F
ðkÞ
1 ðsÞe

sy0
3 þ F

ðkÞ
2 ðsÞe

�sy0
3 þ F

ðkÞ
3 ðsÞe

gðkÞ
2

y0
3 þ F

ðkÞ
4 ðsÞe

�gðkÞ
2

y0
3

h i
, (30)

where

gðkÞ2 ¼ sðlðkÞÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

O2
k

s2

s
. (31)
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In Case 2, this solution is determined as

X 0ðkÞ ¼

Z 1
0

F
ðkÞ
1 ðsÞe

sy0
3 þ F

ðkÞ
2 ðsÞe

�sy0
3 þ F

ðkÞ
3 ðsÞe

igðkÞ
2

y0
3 þ F

ðkÞ
4 ðsÞe

�igðkÞ
2

y0
3

h i
, (32)

where

gðkÞ2 ¼ sðlðkÞÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2

k

s2
� 1

s
. (33)

Thus, we get the following expressions for stresses and displacements from Eqs. (5), (7), (15), (30) and (32).
Case 1:

u
0ðkÞ
r0 ¼

Z 1
0

½F
ðkÞ
1 ðsÞse

sy0
3 � F

ðkÞ
2 ðsÞse

�sy0
3 þ gðkÞ2 ðF

ðkÞ
3 eg

ðkÞ

2
s � F

ðkÞ
4 e�g

ðkÞ

2
sÞ�J1ðsr0Þs2 ds,

u
0ðkÞ
3 ¼ �

Z 1
0

s2½F
ðkÞ
1 ðsÞe

sy0
3 þ F

ðkÞ
2 ðsÞse

�sy0
3 þ F

ðkÞ
3 eg

ðkÞ

2
s þ F

ðkÞ
4 e�g

ðkÞ

2
s�J0ðsr0Þsds,

Q
0ðkÞ
3r ¼ C

ðkÞ
10

Z 1
0

2s2

ðlðkÞÞ4
ðF
ðkÞ
1 ðsÞe

sy0
3 þ F

ðkÞ
2 ðsÞe

�sy0
3 Þ

	

þ s2 þ s2ðlðkÞÞ2 1�
O2

k

s2

� �� �
1

ðlðkÞÞ4
ðF
ðkÞ
3 ðsÞe

gðkÞ
2

y0
3 þ F

ðkÞ
4 ðsÞe

�gðkÞ
2

y0
3 Þ



s2J1ðsr0Þds,

Q
0ðkÞ
33 ¼ C

ðkÞ
10

Z 1
0

O2
k � s2ðlðkÞÞ2 �

s2

ðlðkÞÞ4

� �
sðF
ðkÞ
1 ðsÞe

sy0
3 � F

ðkÞ
2 ðsÞe

�sy0
3 Þ

	

þgðkÞ2 O2
kð1� ðl

ðkÞ
Þ
2
Þ �

s2

ðlðkÞÞ4

� �
ðF
ðkÞ
3 ðsÞe

gðkÞ
2

y0
3 � F

ðkÞ
4 ðsÞe

�gðkÞ
2

y0
3Þ



J0ðsr0Þsds; . . . . ð34Þ

Case 2:

u
0ðkÞ
r0 ¼

Z 1
0

½F
ðkÞ
1 ðsÞse

sy0
3 � F

ðkÞ
2 ðsÞse

�sy0
3

þ gðkÞ2 ð�F
ðkÞ
3 sinðgðkÞ2 sÞ þ F

ðkÞ
4 cosðgðkÞ2 sÞÞ�J1ðsr0Þs2 ds,

u
0ðkÞ
3 ¼ �

Z 1
0

s2½F
ðkÞ
1 ðsÞe

sy0
3 þ F

ðkÞ
2 ðsÞse

�sy0
3

þ F
ðkÞ
3 cosðgðkÞ2 y03Þ þ F

ðkÞ
4 sinðgðkÞ2 y03Þ�J0ðsr0Þsds,

Q
0ðkÞ
3r ¼ C

ðkÞ
10

Z 1
0

2s2

ðlðkÞÞ4
ðF
ðkÞ
1 ðsÞe

sy0
3 þ F

ðkÞ
2 ðsÞe

�sy0
3 Þ

	

þ s2 � s2ðlðkÞÞ2
O2

k

s2
� 1

� �� �
1

ðlðkÞÞ4
ðF
ðkÞ
3 ðsÞ cosðg

ðkÞ
2 y03Þ þ F

ðkÞ
4 ðsÞ sinðg

ðkÞ
2 y03ÞÞ



s2J1ðsr0Þds,

Q
0ðkÞ
33 ¼ C

ðkÞ
10

Z 1
0

O2
k � s2ðlðkÞÞ2 �

s2

ðlðkÞÞ4

� �
sðF
ðkÞ
1 ðsÞe

sy0
3 � F

ðkÞ
2 ðsÞe

�sy0
3 Þ

	

þ gðkÞ2 O2
kð1� ðl

ðkÞ
Þ
2
Þ �

2s2

ðlðkÞÞ4

� �
ð�F

ðkÞ
3 ðsÞ sinðg

ðkÞ
2 y03Þ þ F

ðkÞ
4 ðsÞ cosðg

ðkÞ
2 y03ÞÞ



J0ðsr0Þsds; . . . . ð35Þ

To find the unknowns F
ðkÞ
1 ðsÞ; . . . ;F

ðkÞ
4 ðsÞ we use the boundary and contact conditions (13). For this purpose

we determine the Hankel transformation of the right-hand side of the first condition in Eq. (13). Using the
equality P0dðr0Þ ¼ limr0!0ðP0=pr02Þ we obtain P0=2p for Hankel transformation of P0dðr0Þ from

lim
e!0

Z e

0

P0

pe2
r0J0ðsr0Þdr0.
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Thus, we derive from the conditions (13) the following equations for the above-listed unknowns:

X4
j¼1

F
ð1Þ
j ðsÞa

ð1Þ
ij ðsÞ ¼ P0=ð2pðl

ð1Þ
Þ
2
Þd1i ; i ¼ 1; 2,

X4
j¼1

½F
ð1Þ
j ðsÞa

ð1Þ
ij ðsÞ þ F

ð2Þ
j ðsÞa

ð2Þ
ij ðsÞ� ¼ 0; i ¼ 3; 4; 5; 6;

X4
j¼1

F
ð2Þ
j ðsÞa

ð2Þ
ij ðsÞ ¼ 0; i ¼ 7; 8. ð36Þ

The coefficients of the unknowns in Eq. (36) are determined through the coefficients of those in expressions
(34) and (35). Thus, we determine the unknowns F

ðkÞ
1 ðsÞ; . . . ;F

ðkÞ
4 ðsÞ from Eq. (36) and the stresses and

displacements are determined from expressions (34) and (35).
Now we consider the calculation of the integrals in Eqs. (34) and (35). As it follows from the expressions in

Eqs. (33) and (34), these integrals are the improved ones. Therefore, under calculation procedure, they are
replaced by the corresponding definite integrals, i.e. we use the following relation:Z 1

0

ð:Þds �

Z S�

0

ð:Þds. (37)

The values of S� in Eq. (37) are determined from the convergence criterion of the improved integrals.
Consider the determination of the singular points of the integrated expressions in Eqs. (34), (35). Since the

solution to Eq. (36) can be expressed as

ðF
ð1Þ
1 ðsÞ; . . . ;F

ð2Þ
4 ðsÞÞ ¼

1

det kaijðsÞk
ðdet kb

F
ð1Þ
1
ðsÞ

ij k; . . . ;det kb
F
ð2Þ
4
ðsÞ

ij kÞ, (38)

these singular points coincide with the roots of the equation

det kaijðsÞk ¼ 0; i; j ¼ 1; 2; . . . ; 8 (39)

in s, where

aijðsÞ ¼ að1Þij ðsÞ for i ¼ 1; 2; . . . ; 6; j ¼ 1; 2; 3; 4,

aijðsÞ ¼ að2Þij ðsÞ for i ¼ 3; . . . ; 8; j ¼ 5; . . . ; 8. ð40Þ

Note that the expressions for kb
F
ð1Þ

1
ðsÞ

ij k; . . . ; kb
F
ð2Þ

4
ðsÞ

ij k are obtained from kaijðsÞk by replacing the corresponding
column with the right-hand side of Eq. (36).

A numerical analysis shows that the order of the roots of Eq. (39) is one. Therefore, the order of all singular
points of the integrated expressions is also one. Taking this situation into account in the solution to Eq. (39)
with respect to s we employ the well-known bisection method.

Let us denote the roots of Eq. (39) as

s1os2o � � �osko � � �osN . (41)

The number N in Eq. (41) depends on the values of dimensionless frequency O and the mechanical and
geometrical parameters. After determining the roots (41), the interval ½0;S�� in Eq. (37) is partitioned as
follows: Z S�

0

ð:Þds ¼

Z s1�e

0

ð:Þdsþ

Z s2�e

s1þe
ð:Þdsþ � � � þ

Z skþ1�e

skþe
ð:Þdsþ � � � þ

Z S�

sNþe
ð:Þds. (42)

Consequently, the calculation of the integral (37) is performed in the Cauchy’s principal value sense. Here, e is
a very small value determined numerically from the convergence requirement of the integral (42). Each
interval ½sk þ e; skþ1 � e� is further divided into a certain number of shorter intervals, which are used in Gauss
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integration algorithm. In this integration procedure the values of the integrated expressions, i.e. the values
of unknowns F

ð1Þ
1 ðsÞ; . . . ;F

ð2Þ
4 ðsÞ in the Gauss integration points are determined through Eqs. (36). All these

procedures are performed automatically in PC by the use of corresponding programs constructed by the
author.

Thus, now we consider some numerical results obtained within the framework of the above-discussed
solution procedure and related the influence of the pre-stretching of the layers on the distribution of the
normal stresses acting on the interface planes.
4. Numerical results and discussions

For testing the validity of the algorithm and programmes we consider the case where the slab consists of a
single layer. Analyse the distribution of the stress Q033 on the plane between the rigid foundation and the slab.
We examine the influence of the O (20) on this distribution. According to the mechanical consideration, under
the absence of the initial stretching of the slab, the values of Q033 must approach the values obtained for the
corresponding static problem studied in Ref. [32] as O! 0. Note that in Ref. [32], the expression for the stress
Q033 ¼ s33 was obtained in the integral form within the framework of the classical linear theory of elasticity
and it was assumed that the slab material is compressible.

Now, consider the comparison of the present results with corresponding ones obtained by the use of the
integral expression given for s33 in Ref. [32]. In the latter case we assume that n ¼ 0:499 where n is a Poisson’s
ratio of the slab material. Fig. 2 shows the graphs of the dependencies between Q033h2

1=P0 and r0=h1 (h1 is a slab
thickness) for various O. It follows from these graphs that the values of Q033h2

1=P0 obtained for the dynamical
problem approach the corresponding ones obtained for the static problem as O! 0. This situation holds for
the correctness of the algorithm and programmes used.

We consider the influence of the initial pre-stretching of the single-layer slab on the dependencies between
Q033h2

1=P0 (at r0=h1 ¼ 0) and O. The graphs of these dependencies are given in Fig. 3. The graphs show that for
the considered range of the change of the O, i.e. for

0oOp2:5, (43)

the absolute values of Q033h2
1=P0 increase monotonically with O. As a result of the pre-stretching of the slab the

values of the Q033h2
1=P0 decrease monotonically with l. The explanation of these results will be considered

below.
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1/

P
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2

Fig. 2. The comparison of the results obtained for single-layer slab with corresponding ones given in Ref. [32] as O! 0. Lines 1, 2, 3 and 4

correspond to the values of O ¼ 0:00–0.1, 0.2, 0.5 and 0.7, respectively.
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We turn to the consideration of the stress distribution in the bilayered slab resting on the rigid foundation.
Introduce the notation

e ¼
C
ð1Þ
10

C
ð2Þ
10

; H ¼
h2

h1
; q

ð1Þ
33 ¼

Q
0ð1Þ
33 h2

1

P0

 !�����
y0
3
¼�h1=ðlð1ÞÞ2

,

q
ð2Þ
33 ¼

Q
0ð2Þ
33 h2

1

P0

 !�����
y0
3
¼�h1=ðl

ð1Þ
Þ
2
�h2=ðl

ð2Þ
Þ
2

. (44)
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Fig. 3. The influence of the pre-stretching of the single-layer slab to the dependencies between stress Q033h21=P0 (at r0=h1 ¼ 0:0) and

dimensionless frequency O (20). Lines 1, 2, 3, 4 and 5 correspond to the values of l ¼ 1:0, 1.05, 1.10, 1.15 and 1.20, respectively.
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Fig. 4. The influence of the parameter H ¼ h2=h1 on the dependencies among the stresses q
ð1Þ
33 (solid lines), q

ð2Þ
33 (dashed lines) (44) and

frequency O (20) for the case where the initial pre-stretching is absent, i.e. lð1Þ ¼ lð2Þ ¼ 1:0 and e ¼ 5:0, r0=h1 ¼ 0:0. Lines 1, 2, 3, 4, 5 and 6

correspond to the cases where H ¼ 0:00, 0.05, 0.1, 0.5, 1.0 and 2.0, respectively.
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Assume that the values of O change in the interval (43). We consider the case where C
ð1Þ
10 =r

0ð1Þ ¼ C
ð2Þ
10 =r

0ð2Þ

and analyse the influence of H on the character of the dependencies among q
ð1Þ
33 , q

ð2Þ
33 and O for the case where

lð1Þ ¼ lð2Þ ¼ 1:0, i.e. for the case where the initial stretching is absent. The graphs of these dependencies
are given in Fig. 4 for e ¼ 5. The values of q

ð1Þ
33 , q

ð2Þ
33 are calculated at the point r0=h1 ¼ 0. Note that in Fig. 4

and in the following figures which will be considered, unless otherwise specified, the solid (dashed) lines
show the values of q

ð1Þ
33 ðq

ð2Þ
33 Þ.

It follows from the analyses of the graphs that under certain values of O, the absolute values of q
ð1Þ
33 and q

ð2Þ
33

reach the extrema. We will call these values of O as its ‘‘resonance’’ values. Moreover, these graphs show that
the ‘‘resonance’’ values of O decrease with H. We attempt to explain the described character of the considered
dependencies.

According to Refs. [33–35], the behaviour of the half-space or half-plane under forced vibrations is similar
to that of the system, which comprises a mass, a parallel connected spring and a dashpot. The similar
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Fig. 5. The influence of the parameter e ¼ C
ð1Þ
10 =C

ð2Þ
10 on the dependencies among the stresses q

ð1Þ
33 (solid lines), q

ð2Þ
33 (dashed lines) (44) and

frequency O (20) for the case where the initial pre-stretching is absent, i.e. lð1Þ ¼ lð2Þ ¼ 1:0, and r0=h1 ¼ 0:0. Graphs 1, 2 and 3 correspond

to the values e ¼ 1:5, 3.0 and 5.0, respectively: (a) H ¼ 0:05; (b) H ¼ 0:10; (c) H ¼ 0:5 and (d) H ¼ 1:0.
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behaviour is also observed under dynamical (vibrating) contact problems [36]. The numerical results given in
Fig. 4 and the other ones, which are not illustrated here, show that the behaviour of the bilayered slab on the
rigid foundation under forced vibrations is also similar to the behaviour of the above-mentioned system
comprising mass, spring and dashpot. Consequently, the occurrence of the ‘‘resonance’’ values of O follows
from the nature of the considered mechanical object.

According to the well-known mechanical consideration, the stiffness of the investigated system must
decrease with H in the considered cases (i.e. for the cases where e ¼ C

ð1Þ
10 =C

ð2Þ
1041). Therefore, the ‘‘resonance’’

values of O decrease, which follows from the observation of the graphs given in Fig. 4, with H. It should be
noted that there are also the ‘‘resonance’’ values of O for all values of H, for example, for H ¼ 0:05, 0.10 and
for the system consisting of a single-layer slab and rigid foundation (i.e. for H ¼ 0:00). However, these
‘‘resonance’’ values of O for these cases are out of the interval (43), i.e. are greater than O ¼ 2:5.
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Fig. 6. The influence of the pre-stretching of the slab on the dependencies among the stresses q
ð1Þ
33 (solid lines), q

ð2Þ
33 (dashed lines) (44) and

frequency O (20) obtained for the case where e ¼ 5:0, lð2Þ ¼ 1:00, r0=h1 ¼ 0:0. Graphs 1, 2, 3, 4 and 5 correspond to the cases where

lð1Þ ¼ 1:00, 1.05, 1.10, 1.15 and 1.20, respectively: (a) H ¼ 0:05; (b) H ¼ 0:10; (c) H ¼ 0:50 and (d) H ¼ 1:00.
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Consider the influence of e on the dependencies among q
ð1Þ
33 , q

ð2Þ
33 and O. The graphs of these dependencies are

given in Fig. 5 for various e. In this figure, the graphs separated by letters (a), (b), (c) and (d) are obtained for
H ¼ 0:05, 0.10, 0.50 and 1.00, respectively. It follows from the graphs that under H ¼ 0:05, 0.10 for the
considered values of e, the ‘‘resonance’’ values of O are not observed in the interval (43). But under H ¼ 0:50,
1.00, 2.00, the ‘‘resonance’’ values of O decrease with e. This situation agrees with the well-known mechanical
and engineering considerations.

Now we analyse the influence of the pre-stretching of the layers on the above-discussed dependencies among
q
ð1Þ
33 , q

ð2Þ
33 and O. Note that various numerical results which are not given here show that the influence of the pre-

stretching of the lower layer of the slab on the considered dependencies is insignificant. Therefore, here we will
consider only the case where the pre-stretching exists only in the upper layer of the slab, i.e. lð2Þ ¼ 1:0,
lð1Þ41:0. The graphs of the dependencies are given in Fig. 6 for the case where e ¼ 5:0 with various values of
lð1Þ. In this figure the graphs separated by letters (a), (b), (c) and (d) are constructed for H ¼ 0:05, 0.10, 0.50
and 1.00, respectively.

It follows from the results that the values of q
ð1Þ
33 , q

ð2Þ
33 decrease with lð1Þ. Moreover, it follows from these

results that the ‘‘resonance’’ values of O increase with the pre-stretching of the upper layer of the slab. At the
same time, the pre-stretching of the layer causes the character of the dependencies to change in a vicinity of the
‘‘resonance’’ values of O and the extremum values of q

ð1Þ
33 , q

ð2Þ
33 to decrease. The described type of influences of

lð1Þ on the considered dependencies are explained by the increase in the stiffness of the upper layer of the slab
in the radial direction caused with the pre-stretching of that.

So far we have considered the values of q
ð1Þ
33 , q

ð2Þ
33 at the point r0=h1 ¼ 0. These values are the extrema of q

ð1Þ
33 ,

q
ð2Þ
33 with respect to r0=h1. This conclusion is also proven by the graphs given in Fig. 7 which show the

distribution of q
ð1Þ
33 , q

ð2Þ
33 with respect to r0=h1 for H ¼ 0:50 (Fig. 7(a)) and 1.00 (Fig. 7(b)), respectively. These

graphs are constructed in the case where O ¼ 1:0, e ¼ 5. Note that the above-discussed results on the

dependencies among the q
ð1Þ
33 , q

ð2Þ
33 (at r0=h1 ¼ 0) and O hold also in a qualitative sense for each point of the

interface plane y3 ¼ �h1. At the same time, these results are obtained in the case where C
ð1Þ
10 =C

ð2Þ
10 ¼ r0ð2Þ=r0ð1Þ.

Numerical analyses show that the results considered above hold also in a qualitative sense for the case where

C
ð1Þ
10 =C

ð2Þ
10ar0ð2Þ=r0ð1Þ ¼ 1. However, the ‘‘resonance’’ values of O determined for the latter case are greater than

the corresponding ones determined for the case where C
ð1Þ
10 =C

ð2Þ
10 ¼ r0ð2Þ=r0ð1Þ.This result is testified by the
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Fig. 7. The influence of the pre-stretching of the upper layer of the slab on the distribution of the stresses q
ð1Þ
33 (solid lines), q

ð2Þ
33 (dashed

lines) (44) with respect to r0=h1 in the case where e ¼ 5:0, O ¼ 1:0, lð2Þ ¼ 1:00. Lines 1, 2, 3, 4 and 5 correspond to the cases where

lð1Þ ¼ 1:0, 1.05, 1.10, 1.15 and 1.20, respectively: (a) H ¼ 0:5 and (b) H ¼ 1:00.
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Fig. 8. The graphs of the dependencies between the stress q
ð1Þ
33 (44) and the frequency O (20) obtained in the cases where

C
ð1Þ
10 =C

ð2Þ
10 ¼ r0ð1Þ=r0ð2Þ. (dashed lines) and C

ð1Þ
10 =C

ð2Þ
10ar0ð1Þ=r0ð2Þ ¼ 1 (solid lines) for e ¼ 3:0, r0=h1 ¼ 0:0, lð1Þ ¼ lð2Þ ¼ 1:0. Graphs 1, 2, 3, 4

and 5 correspond to the cases where H ¼ 0:05, 0.1, 0.5, 1.0 and 2.0, respectively.
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graphs given in Fig. 8 which show the dependencies between q
ð1Þ
33 and O for e ¼ 3:0, lð1Þ ¼ lð2Þ ¼ 1:0, r0=h01 ¼ 0.

Here, the solid (dashed) lines correspond to the case where C
ð1Þ
10 =C

ð2Þ
10ar0ð2Þ=r0ð1Þ ¼ 1 ðC

ð1Þ
10 =C

ð2Þ
10 ¼ r0ð2Þ=r0ð1ÞÞ. It

follows from these graphs that the extremum values of q
ð1Þ
33 arising at the ‘‘resonance’’ values for O for the case

C
ð1Þ
10 =C

ð2Þ
10ar0ð2Þ=r0ð1Þ ¼ 1 are less than the corresponding ones arising under C

ð1Þ
10 =C

ð2Þ
10 ¼ r0ð2Þ=r0ð1Þ.
5. Conclusions

In this paper, the dynamical axisymmetric stress field in the initially finite pre-stretched bilayered slab
resting on the rigid foundation is studied within the framework of the piecewise homogeneous bodies model
with the use of the three-dimensional linearized theory of elastic waves in initially stressed bodies. It is
assumed that a time-harmonic point-located normal force acts on the free face plane of the slab. The model
problem is solved by employing the Hankel integral transformation. The materials of the layers are assumed to
be incompressible neo-Hookean materials and the elastic relations of those are given through the Treloar
potential. The formulation and solution to the problem coincide with the corresponding ones of the classical
linear theory of elasticity for an incompressible body in the case where the initial stretching is absent in the
layers. The algorithm for obtaining numerical results is developed. According to these numerical results, the
dependencies among the normal stresses, which act on the interface planes, and frequency of the external force
are analysed. It is assumed that C

ð1Þ
104C

ð2Þ
10 , where C

ðkÞ
10 ðk ¼ 1; 2Þ is a material constant which enter the Treloar

potential of the kth layer.
The numerical results indicate the following conclusions:
�
 the mechanical behaviour of the forced vibration of the bilayered slab resting on the rigid foundation is
similar to that of the system comprising a mass, a spring and a dashpot;

�
 the ‘‘resonance’’ values of the frequency of the external force decrease with C

ð1Þ
10 =C

ð2Þ
10 and with h2=h1, where

h1 ðh2Þ is a thickness of the upper (lower) layer of the slab;

�
 the normal stresses on the interface planes decrease as the pre-stretching of the layers is increased;

�
 the ‘‘resonance’’ values of the frequency increase with pre-stretching;
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�
 the foregoing influence of the pre-stretching of the layers on the stress distribution and on the ‘‘resonance’’
values of the frequency is significant in the quantitative sense and must be taken into account in the
regarding cases.
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